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Abstract. Polarized neutron reflectometry can extract the
depth-dependent magnetization of thin-film magnets more
precisely than other techniques, which are limited to a meas-
urement of the average moment or the moment at the sur-
face. Measuring the reflectivity first with neutrons glancing
off the front surface and again with neutrons glancing off
the back surface yields eight spin cross sections instead of
the usual four. Differences in the front and back reflectivities
indicate the presence of magnetic twists in the sample. We
have applied this method, as well as the more conventional
front-surface-only reflectometry, to study a soft ferromagnet
exchange-coupled to a hard ferromagnet in fields from 5 to
50 mT.

PACS: 75.25.+z; 61.12.Ha; 75.70.-i

Polarized neutron reflectometry (PNR) gives the researcher
a powerful technique by which to study the magnetization
of thin films. Other methods, such as bulk magnetometry,
magneto-optical indicator film (MOIF) imaging, magneto-
optic Kerr effect (MOKE) and X-ray magnetic circular
dichroism (XMCD), have some drawbacks. The first two
techniques are limited to measuring only the average mag-
netization of the sample; they cannot extract the magnetic
structure of constituent layers of thin films. All but the first
technique are constrained by the penetration depth of photons
in magnetic material: sensitivity to magnetic layers buried
tens of nanometers deep inside the structure is reduced.
Cold-neutron reflectometry uses neutrons with wavelengths
comparable to the length-scale over which the magnetism
varies in artificial magnetic structures. The scattering process
gives a depth-sensitivity not attainable with imaging tech-
niques. PNR (see, e.g., [1] for a general quantum mechanical
description) extracts the component of the magnetization M
parallel or perpendicular to the polarization vector p. Using
this information, the projection of the vector magnetization
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M onto the surface can be found as a function of depth, with
a vertical resolution l ∼ 0.1 nm.

The growth of the magnetic recording industry has
spurred the creation of a number of artificial magnetic struc-
tures [2], including exchange-spring magnets [3]. The mag-
netic behavior of many of these structures is not yet fully
understood; hence researchers have turned to PNR to study
how the spins in these materials reorient under conditions of
varying magnetic field and temperature.

In the typical PNR experiment, neutrons are polarized
along a quantization axis +z, typically by a supermirror [4].
A flipper placed before the sample can invert the polariza-
tion of this incident beam when necessary. Another flipper
and polarizing element are placed in the exit beam to select
the orientation of the detected neutron. Thus, four reflectiv-
ities R ij = R++, R−−, R+−, or R−+ can be measured. The
index i indicates the polarization of the incident beam, while
j indicates the polarization of the detected beam. The first
two reflectivities are the non-spin-flip (NSF) while the last
two are known as spin-flip (SF). The nuclear potential always
contributes to the NSF reflectivity.

Inset (a) of Fig. 1 shows the geometry of a reflectivity
experiment. The polarization p ‖ z lies perpendicular to the
scattering vector q ‖ y. The NSF reflectivity is strongly sen-
sitive to the component of magnetization M|| ‖ z, while the
SF reflectivity is strongly sensitive to M⊥ ‖ x. In this geom-
etry, R+− = R−+, and the SF reflectivities cannot distinguish
whether p × M⊥ is parallel or antiparallel to q. Hence for
non-collinear magnetic structures, a measurement of R+−
does not identify whether the moments tend to twist clock-
wise or counterclockwise. Consequently, it is often difficult
to establish with certainty whether the magnetic structure is
non-collinear, or whether it is collinear with the direction of
magnetization at an arbitrary angle with respect to the po-
larization axis. By orienting p ‖ q, all magnetic scattering
appears in the SF channels, and (for, e.g., single-domain he-
lical samples), a difference between R+− and R−+ identifies
them as non-collinear.

In our recent work [5] with p ⊥ q, we reported that with
two measurements of reflectivity one can distinguish whether
some structures are non-collinear. In the first measurement
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Fig. 1a–c. Non-spin-flip reflectivity of an exchange-spring magnet under 26 mT. The data are plotted with circles, and the fits with the lines. The errorbars
are negligble when q < 0.62 nm−1. a Geometry of scattering from the front of a bilayer. Neutrons are polarized along z. The surface normal is parallel to
y and the scattering vector q. b Geometry of scattering from the back. Only q has changed. c Orientation of layer moments and q in a trilayer film with
a mirror plane at m2

neutrons scatter off the front face of the sample (q ‖ y, as in
Fig. 1a). In the second the neutrons scatter off the back of the
sample (q ‖ −y, as in Fig. 1b). In some cases, mere inspec-
tion of the eight measured cross-sections is sufficient to iden-
tify non-collinear structures. A simultaneous fitting of them
quickly eliminates alternate structures which might otherwise
be plausible given only the first measurement. The main por-
tion of Fig. 1 shows the front/back NSF reflectivity of an
exchange-coupled film exhibiting exchange-spring behavior.
The bilayer film consists of Fe0.55Pt0.45(20 nm) topped by
Ni0.80Fe0.20(50 nm) with capping and seed layers of Pt and
a substrate of glass. The front reflectivity is plotted on the
right, with q increasing towards the right. The back reflectiv-
ity is plotted on the left with q increasing towards the left.
Prior to the measurement a magnetic field of 890 mT was ap-
plied along −z. The data were collected in a field of 26 mT
along +z. The fits to the data reveal a structure with a smooth
twist of 90◦, of which 48◦ lies in the hard ferromagnet FePt.
Details can be found in [5]. There is a clear difference in the
front/back reflectivities near the critical edge (below which
the NSF reflectivity is identically 1). We shall now discuss the
key features responsible for the observed asymmetry of actual
magnetic films by exploring the reflectivity of simple models.

1 Model calculations

To calculate the reflectivity, we use the exact solution to the
Schrödinger equation, with a formalism nearly identical to
that of Rühm [6]. To help us extract the essential features of
the magnetic structure responsible for the back/front asym-
metry, we first make some rather dramatic simplifications. To
eliminate effects of refraction, which must occur when neu-
trons scatter off the back of a magnetic film deposited on
a substrate, we consider only free-standing films—ones with-
out a substrate. We set the nuclear scattering length density
bN = 0 to extract only the magnetic portion of the cross-
section. We model a two-layer magnetic film in which the
only difference between the layers is the direction of the mag-
netization mj . The magnitude of magnetization and thickness
of the layers are identical, but the angle from the net magne-
tization M to m1 is θ , and from M to m2 is −θ . The angle
from z to M is Θ. The polarization p is parallel to z and the
scattering vector q ‖ y is normal to the surface of the film. In

this paper we focus on the front/back asymmetry of the NSF
scattering. Analogous examples and arguments can be made
for the SF reflectivity. The vector relationships are shown in
Fig. 2a and the angular relationships are shown in Fig. 2b.

Figure 2a shows the NSF reflectivity for our simplified
structure when Θ = 0 and θ �= 0. The “front reflectivity” is
that measured when neutrons encounter m1 first and “back re-
flectivity” is that measured when neutrons encounter m2 first.
On each side is a cartoon describing the orientation of q, p
and the moments mj . In this geometry, the polarization p bi-
sects the two layer magnetizations and there is no net moment
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Fig. 2. a Non-spin-flip reflectivity from a model bilayer with polarization p
bisecting the angle between the layer moments m1 and m2. Neutrons strike
m1 first on the right and m2 first on the left. b Non-spin-flip reflectivity of
the structure in a) with the polarization axis p rotated 90◦ from that picture.
All arrows reference the same labels as before. c Non-spin-flip reflectivity
of the structure in (a) with the polarization p at an “arbitrary” angle. The
natural coordinate system y′ and z′ are explained in the text
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perpendicular to p. Because our scattering geometry is insen-
sitive to the sign of the x component of the magnetization, we
expect the front and back reflectivities to be identical, as is
evident from the figure. The splitting between R++ and R−−
indicates that there is a net moment in the film.

We rotate the sample (or alternatively, p) about q so that
Θ = 90◦ and show the resulting reflectivity in Fig. 2b. With
zero net moment projected along p, the two NSF reflectivi-
ties interchange when switching from front to back reflectiv-
ity. The splitting between R++ and R−− results from θ �= 0.
When we collapse the non-collinear structure to a collinear
one with θ = 0, the splitting vanishes and the front and
back reflectivities are identical, and, not surprisingly, are very
nearly the average of the NSF reflectivities in Fig. 2b.

In Fig. 2c we give an intermediate value to Θ. As ex-
pected, the front and back reflectivities are intermediate be-
tween identical and interchanged. Near the critical q there
is a pronounced asymmetry between front and back which
immediately identifies this structure as non-collinear. Real
samples have nonvanishing nuclear scattering length density
bN and include a substrate. If we add only the nuclear poten-
tial to our model, the reflectivity plotted in Fig. 2c changes to
closely resemble that of our actual data in Fig. 1. The nuclear
and substrate contributions induce a small additional asym-
metry on top of the dominant magnetic contribution.

2 Discussion

The front/back asymmetry can be understood in the invari-
ant vector derivation of the reflectivity of Rühm et al. [6].
The computation of the reflectivity of a multilayer medium is
straightforward, but involves the multiplication of numerous
(4 ×4) transfer matrices Aj which describe the propagation
of the neutron wave function through a homogenous mag-
netic layer j . The difference in computing front and back
reflectivity is the order in which the Aj are multiplied. The
sample transfer matrix A = ∏

j Aj yields [6] the (2 ×2) re-
flectance matrix R̂ = 1

2 (R0 I + R ·σ) where I is the identity
matrix and σ is the vector of the Pauli spin matrices. R is
a three-component vector of complex numbers and is non-
zero for magnetic media. The NSF reflectivity is given by the
expression RNSF = 1

4 |R0 + R · p|2 where p is the polarization
of the neutrons.

The simplified bilayer film we have been considering
in Fig. 2 imposes a natural Cartesian coordinate system
{x ′, y′, z′} in which the net magnetization M lies along z′ and

the surface normal y′ is coincident with q of the lab frame in
Fig. 1. (Fig. 2c shows the relation among y, y′, z and z′.) For
small θ , we can compute Taylor’s expansion of R about θ = 0
which gives R = θRx x̂′ + θRy ŷ′ + Rz ẑ′ in which Rx , Ry and
Rz have no dependence on θ . To understand the front/back
asymmetry we need to understand how R̂ transforms when
we interchange layers 1 and 2. An inspection of the magne-
tization diagram in Fig. 2b shows that the interchange 1 → 2
is equivalent to the transformation θ → −θ , so that

RNSF
front = 1

4 |R0 + θRx px′ + θRy py′ + Rz pz′ |2 and

RNSF
back = 1

4 |R0 − θRx px′ − θRy py′ + Rz pz′ |2 . (1)

These equations indicate an alternative interpretation. We
see that the back reflectivity with polarization p is identical
to the front reflectivity obtained when p is rotated 180◦ about
z′. Thus when p ‖ ẑ′ (Θ = 0), the reflectivity is unchanged
and when p ⊥ ẑ′ (Θ = 90◦) the reflectivities interchange. For
other values of Θ the back/front reflectivity provides two dif-
ferent (but symmetry related) polarization axes from the one
axis defined in the laboratory frame.

The symmetry of our model is quite low. At the interface
between layers 1 and 2 there is a two-fold axis of rotation
along the mean magnetization M. We can replace this with
a mirror plane by placing a third layer, identical to layer 1, on
the other side of layer 2, as sketched in Fig. 1c. Now the trans-
formation (front) → (back) is equivalent to the interchange of
layers 1 and 3. But the interchanged structure is identical to
the original structure, so RNSF

front = RNSF
back.

We have seen how non-collinear magnetic structures with
no mirror planes parallel to the front surface can exhibit an
asymmetry between back and front reflectivities when the net
magnetization M makes a non-zero angle Θ with respect to
the polarization axis p. The Born approximation is inadequate
to explain this effect.
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